Новости
01.12.2016


29.11.2016


29.11.2016


29.11.2016


28.11.2016


18.12.2015

Состояние сельского хозяйства в России и в мире характеризуется устойчивой тенденцией к экспоненциальному росту затрат невосполнимой энергии на каждую дополнительную единицу продукции (в т.ч. пищевую калорию), всевозрастающей опасностью глобального загрязнения и разрушения природной среды, а также высокой зависимостью величины и качества урожая от действия абиотических и биотических стрессоров. Между тем широкое применение техногенных средств во второй половине XX столетия создало иллюзию о якобы высокой степени защищенности агроэкосистем от погодных флуктуаций. При этом не учитывалось, что повышение потенциальной урожайности агроценозов и их устойчивость к абиотическим и биотическим стрессорам оказываются качественно разными и в определенной степени самостоятельными задачами. Известно, что при действии абиотических стрессоров (температурных, водных, эдафических и др.) наибольший урон несут сорта и гибриды именно с высокой потенциальной продуктивностью, которые по сравнению с экстенсивными, как правило, более чувствительны к неблагоприятным, а тем более экстремальным условиям внешней среды.
Действие абиотических и биотических стрессоров - главная причина 2-3-кратных и более различий между потенциальной и реализованной урожайностью сельскохозяйственных культур. Причем, чем хуже почвенно-климатические и погодные условия региона, чем ниже уровень техногенной оснащенности хозяйств, тем выше указанная разница. Заметим, что эффективность применения мелиорантов, удобрений, орошения, пестицидов и других техногенных факторов, в конечном счете, также зависит от экологической устойчивости агроэкосистем и агроландшафтов. Более того, экологическая устойчивость растений важна и в регулируемых условиях внешней среды (например, только «засухоустойчивость» орошаемых культур позволяет им противостоять суховеям; овощные культуры в теплицах должны быть защищены от действия биотических стрессоров и т.д.). Экологическая устойчивость является также и главным условием продвижения экономически оправданного возделывания сельскохозяйственных культур в неблагоприятные по почвенно-климатическим и погодным условиям земледельческие зоны. Известно, что высокая зависимость растениеводства от «капризов» погоды приводит к отрицательным последствиям во всей цепи межотраслевых (кормопроизводство, животноводство, перерабатывающая промышленность) и межрегиональных связей в АПК, значительно усугубляя проблему ритмичного обеспечения населения продуктами питания, а промышленности - сырьем.
Состояние устойчивости или динамического равновесия агроэкосистемы предполагает поддержание определенного уровня ее продуктивности в варьирующих, в т.ч. экстремальных, условиях внешней среды. При этом показатели сохранения динамики численности популяций различных видов фауны и флоры, так же как и биогеохимических циклов, остаются достаточно постоянными во времени и пространстве. Преимущество устойчивых экосистем, находящихся в состоянии динамического равновесия, проявляется в их способности с наибольшей эффективностью утилизировать ресурсы окружающей среды и накапливать наибольшее количество биомассы на единице площади в течение вегетации и в единицу времени.
Стратегия адаптивной интенсификации растениеводства ориентирует на экологически, экономически и морально-психологически приемлемый (допустимый) уровень риска. Важнейшие этапы его определения - идентификация механизмов и характера опасности, а также оценка вероятности их проявления с учетом принятия упредительных мер. В настоящее время с этой целью широко используют основные положения теории катастроф, в соответствии с которой защита от них может быть активной и пассивной, предупредительной и восстановительной. В этой связи различают прогнозы годичный, сезонный, краткосрочный, а также оперативную информацию о наступивших событиях. К примеру, мероприятия по предотвращению пагубных последствий засухи включают агроэкологическое макро-, мезо- и микрорайонирование посевов и посадок; подбор засухоустойчивых культур и сортов (гибридов); сохранение запасов влаги за счет паров, мульчирования, использования кулис и лесополос, строительство ирригационных сооружений и т.д.
Повышение экологической устойчивости агроэкосистем и агроландшафтов - главный резерв устойчивого роста их урожайности, ресурсо-энергоэкономичности, экологической безопасности и рентабельности. Причем современные химико-техногенные методы интенсификации растениеводства лишь в малой степени способны повысить устойчивость агроценозов к «капризам» погоды. Более того, высокие дозы азотных удобрений, орошение, видовая однотипность и загущение посевов обычно уменьшают экологическую устойчивость агроэкосистем. При существующих технологиях теряется, загрязняя окружающую среду, около 50-60% азотных, 70-80% фосфорных и свыше 50% калийных удобрений, до 60-90% поливной воды, а темпы и масштабы водной и ветровой эрозии в условиях техногенно-интенсивного земледелия в большинстве стран достигли катастрофического уровня. В результате по мере роста потенциальной урожайности агроэкосистем их устойчивость к действию экологических стрессоров обычно снижается, а вариабельность абсолютной величины и качества урожая все в большей степени определяется погодными, а не агротехническими факторами. Неслучайно даже в странах с наивысшим уровнем техногенной интенсификации земледелия вариабельность абсолютной урожайности по годам для многих сельскохозяйственных культур на 30-80% зависит от «капризов» погоды. Так, в штате Иллинойс (США) средний коэффициент корреляции между урожайностью кукурузы и погодными факторами равен 0,88. Показано, что климатическая составляющая изменчивости урожайности озимой пшеницы в странах СНГ варьирует до 30% на Украине и Северном Кавказе до 60%, в северо-восточных и восточных регионах России межгодовая вариабельность урожайности зерновых культур превышает 25%.
Ранее уже отмечалось, что лишь 10% пашни в мире свободны от действия стрессовых факторов, около 20% - подвержены минеральному стрессу, 26% - засухам и 15% - низким температурам. Кислые почвы (токсичные концентрации ионов алюминия или марганца) составляют 40% пашни мира. Именно действие абиотических стрессоров - главная причина того, что реализуется лишь 25-30% потенциальной урожайности сельскохозяйственных культур. Полное устранение действия абиотических стрессоров за счет техногенной мелиорации среды обычно оказывается экономически невыгодным или технически неосуществимым.
К числу важнейших факторов, обусловливающих низкую экологическую устойчивость современных агроэкосистем, следует отнести обеднение их видового состава, всевозрастающую генетическую однородность сортов и гибридов, а также единообразие агроландшафтов. Так, в полузасушливых регионах мира около 90% общего производства зерна обеспечивается лишь за счет четырех культур: пшеницы, ячменя, сорго и проса. Тенденция к сокращению видового разнообразия не только не способствует росту полноценности структуры питания, но и неадаптивна с точки зрения наиболее эффективного использования неравномерно распределенных во времени и пространстве почвенно-климатических и погодных условий, а также повышения экологической устойчивости агроэкосистем и агроландшафтов. Известно, что каждый вид и сорт растений имеют свой оптимум условий среды для нормального функционирования фотосинтетического аппарата (температура, pH субстрата, содержание в почве N, Р, К и т.д.). Если растения С4-типа (кукуруза, сорго, сахарный тростник и др.) лучше приспособлены к зонам с высокой температурой (более высокий температурный оптимум фотосинтеза), то растения С3-типа (свекла, подсолнечник, морковь и др.) обеспечивают высокую продуктивность в регионах с более низкими температурами и в лучше вентилируемых посевах. Причем разные виды культивируемых растений в одной и той же почвенно-климатической зоне имеют существенно разную величину климатической и погодной составляющей изменчивости урожайности. Вот почему большее разнообразие сельскохозяйственных культур, особенно подобранных по принципу взаимокомпенсаторности, обеспечивает лучшую преадаптивность, а следовательно, и экологическую надежность систем растениеводства.
Многочисленные данные подтверждают, что преимущественно химико-техногенная интенсификация и узкая специализация хозяйств обычно сопровождаются разрушением естественных элементов ландшафта, снижением разнообразия природных биотопов, исчезновением многих видов растений и животных. При этом широкое применение пестицидов нарушает экологическое равновесие в агроэкосистемах и в большинстве случаев приводит к появлению более агрессивных и вирулентных рас патогенов, а также усилению вредоносности отдельных видов насекомых и сорняков. Уничтожение насекомых должно производиться своевременно.
Все это резко снижает не только эффективность использования техногенных факторов, но и запасы доступной влаги (возрастает вероятность засух), уровень биогенности почвы, темпы микробиологической детоксикации пестицидов и т.д. Из-за водной, ветровой и техногенной эрозии увеличивается пестрота полей по плодородию почвы, резко ухудшаются ее водно-физические свойства, что также значительно усиливает зависимость величины и качества урожаев от «капризов» погоды.
Таким образом, наиболее широко распространенная в настоящее время преимущественно химико-техногенная интенсификация сельского хозяйства находится в очевидном противоречии с основными эволюционными законами, а также концепцией гармоничного развития биосферы и человеческого общества. Даже сторонники преимущественно химико-техногенной интенсификации признают кризисность ситуации в современном сельском хозяйстве, хотя и относят ее к «mild crisis - мягкому кризису». Системный анализ противоречий существующей стратегии интенсификации АПК свидетельствует о ее бесперспективности не только в плане ресурсоэнергосбережения и природоохраны, но и устойчивого повышения продуктивного потенциала агроэкосистем, включая их адаптацию к возможным неблагоприятным глобальным и локальным изменениям климата.
При обсуждении путей повышения устойчивости отечественного сельского хозяйства к неблагоприятным и экстремальным условиям внешней среды заслуживает внимания и краткий исторический анализ этой проблемы. Известно, что средняя урожайность основных зерновых культур (ржи, пшеницы, овса, ячменя и др.) за период с XVII до первой половины XIX вв. в России почти не изменялась, составив в конце XVI - начале XVII вв. - 4,7; в первой и второй половине XVIII в. соответственно 4,8 и 4,9; в первой половине XIX в. - 4,7 ц/га. И только в период 1860-1914 гг. урожайность зерновых на территории Европейской России почти удвоилась, достигнув 9-10 ц/га. Примечательно, что коэффициент межгодовой вариабельности урожайности основных зерновых культур в России за последние 100 лет практически не уменьшился. Так, в 1883 -1911 гг. средняя вариабельность зерновых культур по 50 губерниям Европейской части России была равна для ржи 13,5%, овса - 19,5%, яровой и озимой пшеницы - соответственно 23,7 и 26,9%. Причем по вариабельности валовых сборов зерна пшеницы Россия превосходила все европейские страны и США, уступая лишь Австралии (табл. 6.143, 6.144, 6.145). Оказалось, что для России норма - не средние сборы, а резко отклоняющиеся от нормы. Если учитывать разницу в количестве сборов выше и ниже нормы, то в России требуется в 4,5 раза больше времени для ликвидации недорода, чем в других странах. Количество выдающихся сборов на 10 средних по разным регионам России варьировало от 3,5 до 16,7, количество феноменальных - от 0 до 50, а в среднем - 5. Интенсивность колебаний росла с севера и запада к югу и востоку. В отличие от других стран, где колебания имеют тенденцию от (-) к (+), в России нет четкой тенденции к повышению сборов.
Наибольший ущерб посевам наносят почвенные и атмосферные засухи, которые наблюдаются почти ежегодно на 70% площадей зерновых культур. «В Нечерноземной полосе России, - писал А. Левицкий,- уже давно сложилась народная поговорка, что «не земля родит, а небо...». Наиболее губительны в России весенние засухи, продолжительностью 3-12 дней. Вот почему даже самые хлебородные черноземные губернии, составлявшие «житницу» России, с сожалением отмечал В. Винер в 1912 г, в отдельные годы кормятся привозным хлебом. Характерно, что в близкорасположенных хозяйствах количество выпавших в течение года осадков может различаться в 2-3 раза. Даже в средний по увлажнению год в южных степях Поволжья из-за недостатка влаги как в течение весенне-летней вегетации, так и в осенний период систематический недобор урожая озимой пшеницы равен 5-15 ц/га. С учетом разных коэффициентов вариации урожайности разных культур в одних и тех же условиях внешней среды можно путем соответствующего сочетания культур выровнять валовой сбор зерна, повысив устойчивость его производства в целом (с разным соотношением культур в общем вале) (табл. 6.146).

Пути повышения устойчивости отечественного сельского хозяйства к неблагоприятным условиям внешней среды
Пути повышения устойчивости отечественного сельского хозяйства к неблагоприятным условиям внешней среды

За 1970-1980 гг., т.е. в период наиболее высоких темпов химикотехногенной интенсификации отечественного сельского хозяйства, амплитуда изменчивости урожайности сельскохозяйственных культур в целом по территории бывшего СССР составляла: для зерновых культур 10,9-18,5 ц/га; сахарной свеклы 181-266 ц/га; картофеля 60-135 ц/га; кукурузы на зерно 24,4-35,0 ц/га. В ряде зон вариабельность урожайности зерновых была значительно выше: в Поволжье 6,0-18,4 ц/га, Западной Сибири 8,8-17,4, Джезказганской области 0,9-11,4, Карагандинской 1,9-13,8 ц/га.
Зависимость урожайности и качества зерна оказывается весьма неодинаковой для разных условий среды, технологий, а также культур. Причем с увеличением засушливости в среднем на 10% эффективность применения удобрений на зерновых культурах уменьшается на 15%. Если климатическая составляющая изменчивости урожаев яровой пшеницы для США в целом равна 0,14, то для Восточно-Сибирского района - 0,16; Поволжского - 0,23; Уральского - 0,27; Западно-Сибирского - 0,34. Аналогичная ситуация и с озимой пшеницей: доля зависящей от климата и изменчивости для Европы в целом не превышает 0,04; Германии - 0,08; Франции - 0,09; Северо-Кавказского района - 0,18; Центрально-Черноземного - 0,23. Примечательно, что число лет, считавшихся неблагоприятными в условиях Среднего Поволжья для получения устойчивого и высокого урожая, в конце XIX в. осталось таким же, как и в конце XX столетия. Анализ производства зерновых культур в мире показывает, что начиная с 1970-х гг. в ряде регионов мира, обеспечивающих 40% производства зерна, снизились и темпы роста урожайности. В предстоящий период этот процесс, по мнению Kogan, затронет регионы, на долю которых приходится 55-65% мирового производства зерна. Поэтому дальнейшее совершенствование технологий, так же как и создание сортов с большей засухоустойчивостью, позволяющих преодолеть водный дефицит, имеет исключительно важное значение.
Указанный спад темпов роста урожайности и производства зерна связан с климатическими условиями, тогда как возможности применяемых технологий достигли своего максимума. Вот почему в ближайшие десятилетия агрономический и технический прогресс в сельском хозяйстве вряд ли позволит уменьшить неблагоприятное воздействие аномальных условий погоды. В связи с этим необходима более полная информация о глобальных и региональных изменениях климата, а также их влиянии на сельскохозяйственное производство. Наряду с неблагоприятными почвенно-климатическими и погодными условиями, причиной указанной ситуации во многих земледельческих зонах России являются низкий уровень техногенной оснащенности хозяйств, а также организационноэкономические условия земледелия, которые недостаточно адаптивны к складывающимся природно-климатическим, погодным и рыночным факторам. В их числе неадаптивность агроэкологического макро-, мезо-и микрорайонирования сельскохозяйственных угодий, игнорирование природоохранной и, прежде всего, почвозащитной и почвоулучшающей функции и видовой структуры посевных площадей, неадаптивность внутрихозяйственного землеустройства, не обеспечивающего дифференцированного использования, а также лимитирующих величину и качество урожая факторов природной среды, низкий уровень агрофильности существующей системы машин и сельскохозяйственных орудий, не учитывающей в должной мере громадное разнообразие почвенноклиматических и погодных условий, несоответствие видовой и породной структуры животноводства местной кормовой базе и т.д.
He ставя задачи раскрыть все причины снижения экологической устойчивости агроэкосистем, сложность и многоплановость которых очевидны, остановимся лишь на некоторых главных, на наш взгляд, особенностях. Как уже отмечалось, интенсификация растениеводства сопровождается сокращением числа культивируемых видов растений, а также все большей генетической однородностью широко распространенных сортов и гибридов. Считается, что в настоящее время около 66% продуктов питания производится благодаря возделыванию всего лишь нескольких зерновых культур, а свыше 90% - за счет 15-20 видов сельскохозяйственных растений. Одновременно наблюдается упрощение агроэкологических систем на всех уровнях, включая снижение функций и даже ликвидацию механизмов и структур саморегуляции. Такая тенденция неизбежно приводит к увеличению экологической и генетической уязвимости агроценозов. Показано, например, что генетическое разнообразие ржавчины злаков, поражающей новые сорта пшеницы, обычно возрастает по мере того как они возделываются на все больших площадях в течение длительного периода. Актуальность создания сортов пшеницы, устойчивых, например, к стеблевой ржавчине, связана с весьма широким распространением и большой вредоносностью Puccinia graminis Per., имеющей более 150 рас. При этом речь идет о высоких темпах генотипической дифференциации популяций вредных видов на посевах устойчивых сортов и гибридов растений. В частности, образование новых штаммов BTM происходит лишь на устойчивом к нему «растении-хозяине», тогда как на восприимчивых растениях новые линии патогена обычно не обнаруживаются.
Отмечается также существенное расширение ареала и усиление вредоносности фузариоза колоса озимой пшеницы и гиббереллеза початков и стебля кукурузы в регионах их массового возделывания. Антифузариозная стратегия защиты агроценозов в зонах пшенично-кукурузного пояса включает введение длинноротационных пшенично-кукурузных севооборотов, возделывание мозаики сортов и гибридов, размещение их по фитосанитарным предшественникам, глубокую вспашку с оборотом пласта и т.д.
В целом, сохраняется положение, которое Макфедьен более 40 лет назад охарактеризовал как состязание между химиками и вредителями, в котором химики всегда неизбежно остаются позади. Удастся ли опровергнуть это мнение Макфедьена, покажет будущее. Однако в современном мире экономика, охрана окружающей среды и здоровье человека настолько взаимосвязаны, что односторонний подход, основанный на использовании только средств химической защиты агроценозов, бесперспективен. Следует учитывать и то обстоятельство, что применение средств химико-техногенной оптимизации условий внешней среды (орошение, удобрения), а также переход к монокультуре или севооборотам с короткой ротацией, хотя и являются важными факторами реализации потенциальной продуктивности техногенно-интенсивных сортов, в не меньшей (а иногда и в большей) степени благоприятствуют массовому распространению некоторых видов патогенов, вредителей и сорняков. Кроме того, некоторые агротехнические приемы (высокие дозы азотных удобрений, орошение, загущенные посевы) значительно снижают устойчивость агрофитоценозов к действию абиотических и биотических стрессоров.
В настоящее время агроном располагает немалым арсеналом средств повышения потенциальной продуктивности растений. Ho его возможности регулировать устойчивость агроценозов в неблагоприятных и особенно в экстремальных условиях среды крайне ограничены. Например, даже в условиях орошаемого земледелия суховей в течение 2-3 часов приводит к снижению урожайности на 50-90%. Более того, при использовании агротехнических приемов, способствующих ростовым процессам, экологическая устойчивость растений, как правило, уменьшается. Причем падение устойчивости к одному из стрессоров вызывает снижение устойчивости и к другим. Поэтому важно использовать все средства экзогенной регуляции экологической устойчивости растений, включая более широкое применение биологически активных веществ.
Исходя из общей концепции стратегии адаптивной интенсификации АПК, а также учитывая главные причины его кризисного состояния в России, в число первоочередных мер по повышению экологической устойчивости агроэкосистем и агроландшафтов должны быть включены:
1. Усиление роли государства в развитии отечественного АПК за счет первоочередного выделения для этих целей материальных и финансовых ресурсов, а также регулирования отечественного рынка сельскохозяйственной продукции.
2. Повышение уровня адаптивности агроэкологического макро-, мезо- и микрорайонирования сельскохозяйственных угодий, меж- и внутрихозяйственного землеустройства, оптимизации региональной структуры растениеводства, животноводства и социально-производственной инфраструктуры.
3. Выбор оптимальных путей сопряжения адаптивной интенсификации АПК с социально-экономическим развитием сельской местности, их взаимной адаптацией и коэволюцией (в местном и региональном масштабах).
4. Разработку адаптивно-ландшафтных схем и форм расселения с целью обеспечения высокого «качества жизни» для жителей села и сохранения здоровой «среды обитания» в долговременной перспективе.
5. Создание компьютерных баз данных и информационных технологий (ретроспективных, текущих, прогнозных, нормативно-справочных, экспертных, экстраполятивных, картографических) адаптивной интенсификации АПК с различной степенью территориального разрешения, интегративности и пространственно-временного соподчинения.